Journal of Lipid Research (Jun 2014)

Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[S]

  • Hee-jin Jun,
  • Ji Hae Lee,
  • Jiyoung Kim,
  • Yaoyao Jia,
  • Kyoung Heon Kim,
  • Kwang Yeon Hwang,
  • Eun Ju Yun,
  • Kyoung-Rok Do,
  • Sung-Joon Lee

Journal volume & issue
Vol. 55, no. 6
pp. 1098 – 1110

Abstract

Read online

We investigated the hypotriglyceridemic mechanism of action of linalool, an aromatic monoterpene present in teas and fragrant herbs. Reporter gene and time-resolved fluorescence resonance energy transfer assays demonstrated that linalool is a direct ligand of PPARα. Linalool stimulation reduced cellular lipid accumulation regulating PPARα-responsive genes and significantly induced FA oxidation, and its effects were markedly attenuated by silencing PPARα expression. In mice, the oral administration of linalool for 3 weeks reduced plasma TG concentrations in Western-diet-fed C57BL/6J mice (31%, P < 0.05) and human apo E2 mice (50%, P < 0.05) and regulated hepatic PPARα target genes. However, no such effects were seen in PPARα-deficient mice. Transcriptome profiling revealed that linalool stimulation rewired global gene expression in lipid-loaded hepatocytes and that the effects of 1 mM linalool were comparable to those of 0.1 mM fenofibrate. Metabolomic analysis of the mouse plasma revealed that the global metabolite profiles were significantly distinguishable between linalool-fed mice and controls. Notably, the concentrations of saturated FAs were significantly reduced in linalool-fed mice. These findings suggest that the appropriate intake of a natural aromatic compound could exert beneficial metabolic effects by regulating a cellular nutrient sensor.

Keywords