Water (Sep 2023)

Quantitative Analysis of the Uncertainty of Drought Process Simulation Based on Atmospheric–Hydrological Coupling in Different Climate Zones

  • Huating Xu,
  • Zhiyong Wu,
  • Hai He,
  • Ruifang Chen,
  • Xiaotao Wu

DOI
https://doi.org/10.3390/w15183286
Journal volume & issue
Vol. 15, no. 18
p. 3286

Abstract

Read online

Droughts can lead to drought disasters, which have become one of the main natural disasters affecting the development of social economies and ecological environments around the world. Timely and effective drought process simulation and prediction based on atmospheric–hydrological coupling is crucial for drought prevention and resistance. The initial condition (IC) is one source causing uncertainty in drought process simulation and prediction, and the impacts are different with drought duration, basin size and region. Therefore, a quantitative method that measures the uncertainty caused by ICs on the drought process simulation in different climate zones is proposed in this study. In this study, the VIC (Variable Infiltration Capacity) model at a resolution of 0.05°, which is proven as an ideal model to reflect drought processes, was used as the hydrological model to obtain soil moisture. By analyzing the Soil Moisture Anomaly Percentage Index (SMAPI) error characteristics that were simulated based on different ICs, an uncertainty index for drought process simulation was constructed in different climate zones. It was found that with the development of a drought process, the uncertainty converges, and it decreases to within 10% after a drought occurs for 5 to 6 months, while it is less than 5% in the particular basin in a humid region. In climate transition zones, both the uncertainty and its decrease rate are greater than those in humid regions. Climate characteristics, as well as soil types and vegetation types, are fundamental factors that cause differences in drought process simulation and uncertainty changes. The precipitation and temperature distribution more obviously vary spatially and temporally, a greater uncertainty is caused by ICs. This quantitative method reveals the impact of ICs on drought process simulation in different climate regions and provides a basis for the further improvement of drought simulation and prediction based on atmospheric–hydrological coupling.

Keywords