Micromachines (Apr 2023)

A Methodology for Enhancing SSVEP Features Using Adaptive Filtering Based on the Spatial Distribution of EEG Signals

  • Shengyu Wang,
  • Bowen Ji,
  • Dian Shao,
  • Wanru Chen,
  • Kunpeng Gao

DOI
https://doi.org/10.3390/mi14050976
Journal volume & issue
Vol. 14, no. 5
p. 976

Abstract

Read online

In this paper, we propose a classification algorithm of EEG signal based on canonical correlation analysis (CCA) and integrated with adaptive filtering. It can enhance the detection of steady-state visual evoked potentials (SSVEPs) in a brain–computer interface (BCI) speller. An adaptive filter is employed in front of the CCA algorithm to improve the signal-to-noise ratio (SNR) of SSVEP signals by removing background electroencephalographic (EEG) activities. The ensemble method is developed to integrate recursive least squares (RLS) adaptive filter corresponding to multiple stimulation frequencies. The method is tested by the SSVEP signal recorded from six targets by actual experiment and the EEG in a public SSVEP dataset of 40 targets from Tsinghua University. The accuracy rates of the CCA method and the CCA-based integrated RLS filter algorithm (RLS-CCA method) are compared. Experiment results show that the proposed RLS-CCA-based method significantly improves the classification accuracy compared with the pure CCA method. Especially when the number of EEG leads is low (three occipital electrodes and five non occipital electrodes), its advantage is more significant, and accuracy reaches 91.23%, which is more suitable for wearable environments where high-density EEG is not easy to collect.

Keywords