Shanghai Jiaotong Daxue xuebao (Dec 2022)
A Multi-Scenario Integrated Flexible Planning Method for Microgrid
Abstract
In order to improve the economy of microgrid construction and operation, and meet the personalized demand for reliability of various types of microgrids, an integrated flexible planning method for microgrid is proposed to adapt to multiple scenarios. Based on the judgment results of type and composition, a two-layer model including capacity planning and grid planning is established. The lower-level capacity planning takes the minimum operation cost of micro-source construction as the goal and adopts the mixed integer optimization algorithm to solve it. The upper layer grid planning takes the minimum cost of network construction and operation as the goal, and uses the particle swarm optimization algorithm to solve it. A closed-loop integrated planning system consisting of judgment, capacity planning, and grid planning is formed. The system can meet the personalized reliability requirements of different microgrids by flexibly adjusting the independent operation duration constraints and the load outage attention parameters. The example shows that the proposed method can effectively reduce the construction and operation cost of microgrid, and has a good adaptability to different types and components and different reliability requirements.
Keywords