Machine Learning: Science and Technology (Jan 2024)
Uncertainty estimation of machine learning spatial precipitation predictions from satellite data
Abstract
Merging satellite and gauge data with machine learning produces high-resolution precipitation datasets, but uncertainty estimates are often missing. We addressed the gap of how to optimally provide such estimates by benchmarking six algorithms, mostly novel even for the more general task of quantifying predictive uncertainty in spatial prediction settings. On 15 years of monthly data from over the contiguous United States, we compared quantile regression (QR), quantile regression forests (QRF), generalized random forests (GRF), gradient boosting machines (GBM), light gradient boosting machine (LightGBM), and quantile regression neural networks (QRNN). Their ability to issue predictive precipitation quantiles at nine quantile levels (0.025, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.975), approximating the full probability distribution, was evaluated using quantile scoring functions and the quantile scoring rule. Predictors at a site were nearby values from two satellite precipitation retrievals, namely Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Integrated Multi-satellitE Retrievals (IMERG), and the site’s elevation. The dependent variable was the monthly mean gauge precipitation. With respect to QR, LightGBM showed improved performance in terms of the quantile scoring rule by 11.10%, also surpassing QRF (7.96%), GRF (7.44%), GBM (4.64%) and QRNN (1.73%). Notably, LightGBM outperformed all random forest variants, the current standard in spatial prediction with machine learning. To conclude, we propose a suite of machine learning algorithms for estimating uncertainty in spatial data prediction, supported with a formal evaluation framework based on scoring functions and scoring rules.
Keywords