Microbiology Independent Research Journal (Apr 2016)
Factors affecting the immunogenicity of the live attenuated influenza vaccine produced in continuous cell line
Abstract
The biological basis for the restricted immunogenicity of some live attenuated influenza vaccine strains generated on the backbone of the cold adapted (ca) A/Singapore/1/1957/ca (H2N2) influenza A virus master strain and produced in the Vero cells was investigated. According to our previous results the vaccine candidate made from A/Hong Kong/1035/1998 (H1N1) Vero-derived virus did not provoke a measurable antibody titers following the intranasal immunization of humans. We report here that the hemagglutinin (HA) of A/Hong Kong/1035/1998 virus contained the mutation 10Ile→Val in the HA2 subunit, that increased the pH threshold of HA conformational change (pH of activation) by 0.3 pH units and therefore might be responsible for the lack of immune response in humans. Similar effect was shown for the reassortant made from the Vero-derived A/Switzerland/5389/1995 (H1N1) (5389wt) virus which had the HA2 mutation 3Phe→Leu leading to the lack of immune response in mice. Another factor compromising the immunogenicity of a vaccine candidate is the incompatibility of epidemic virus HA with the M gene of the master strain. In mice the 6/2 A/Switzerland/5389/1995 reassortant induced antibodies that were directed predominantly to the HA2 subunit and were detectable by ELISA but not by a hemagglutination inhibition (HAI) test. In contrast, the 5/3 reassortant, bearing the HA, neuraminidase (NA), and M genes from the epidemic virus induced an equivalent amount of antibodies against the HA1 and HA2 subunits detected by HAI and ELISA. By comparing the sensitivity of the viruses to amantadine, we showed that the M2 ion channel of the master strain had lower activity than that of the A/Switzerland/5389/1995. These data suggest that M2 of the master strain was not sufficiently active to keep the pH of the trans - Golgi network high enough to prevent the conformational change of the acid sensitive HA to the low pH form. Overall, the adaptation mutations in the HA of the vaccine candidate that increase the pH of HA activation as well as the incompatibility of HA and M genes must be taken into consideration when constructing the reassortant strains for the live attenuated vaccine.