Iranian Journal of Basic Medical Sciences (Jul 2024)
Evaluation of the influence of N-Acetylcysteine and broccoli extract on systemic paraquat poisoning: Implications for biochemical, physiological, and histopathological parameters in rats
Abstract
Objective(s): Paraquat (PQ), a potent environmental herbicide, is recognized for inducing irreparable toxic damage to biological systems. This study aimed to evaluate the effectiveness of N-acetylcysteine (NAC) and broccoli extract, individually and in combination, in alleviating PQ poisoning in rats, leveraging the exceptional anti-oxidant, anti-inflammatory, and anti-apoptotic properties of broccoli.Materials and Methods: Seventy Wistar rats were categorized into seven groups: C (control, vehicle), PQ (paraquat at 40 mg/kg), BC (broccoli extract at 300 mg/kg), NC (N-acetylcysteine at the same dose of 300 mg/kg), and combined groups PQ+BC, PQ+NC, and NC+PQ+BC, all administered equivalent doses. After 42 days, blood samples were collected to evaluate liver and kidney parameters, proinflammatory biomarkers, caspase-3, and caspase-9. Lung tissues were excised, with one part preserved for hydroxyproline and oxidative stress parameter measurement and another sectioned and stained for histopathological analysis.Results: The PQ group exhibited the highest lung-to-body weight (LW/BW) ratio, while the PQ+BC+NC group demonstrated the lowest ratio. Results indicated an elevated lung hydroxyproline concentration and a significant reduction in anti-oxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase, and total anti-oxidant capacity) (P<0.001). The PQ+BC group showed modified malondialdehyde levels, reaching a peak in the PQ group. Additionally, a significant decrease in tumor necrosis factor, interleukin-1, caspase-3, and caspase-9 was observed in the PQ+BC+NC group (P<0.01). Pulmonary edema, hyperemia, and severe hemorrhage observed in the PQ group were notably reduced in the PQ+BC+NC group.Conclusion: The combination of active compounds from broccoli and NAC demonstrated significant systemic and pulmonary effects in mitigating PQ-induced toxicity.
Keywords