PLoS ONE (Aug 2010)

The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA.

  • Sophie Laget,
  • Michael Joulie,
  • Florent Le Masson,
  • Nobuhiro Sasai,
  • Elisabeth Christians,
  • Sriharsa Pradhan,
  • Richard J Roberts,
  • Pierre-Antoine Defossez

DOI
https://doi.org/10.1371/journal.pone.0011982
Journal volume & issue
Vol. 5, no. 8
p. e11982

Abstract

Read online

BackgroundMBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation.Principal findingsHere we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested.ConclusionsOur data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.