Stats (Jan 2022)
A Flexible Mixed Model for Clustered Count Data
Abstract
Clustered count data are commonly modeled using Poisson regression with random effects to account for the correlation induced by clustering. The Poisson mixed model allows for overdispersion via the nature of the within-cluster correlation, however, departures from equi-dispersion may also exist due to the underlying count process mechanism. We study the cross-sectional COM-Poisson regression model—a generalized regression model for count data in light of data dispersion—together with random effects for analysis of clustered count data. We demonstrate model flexibility of the COM-Poisson random intercept model, including choice of the random effect distribution, via simulated and real data examples. We find that COM-Poisson mixed models provide comparable model fit to well-known mixed models for associated special cases of clustered discrete data, and result in improved model fit for data with intermediate levels of over- or underdispersion in the count mechanism. Accordingly, the proposed models are useful for capturing dispersion not consistent with commonly used statistical models, and also serve as a practical diagnostic tool.
Keywords