BMC Neurology (Jun 2020)

Amino acid metabolism, lipid metabolism, and oxidative stress are associated with post-stroke depression: a metabonomics study

  • Man Wang,
  • Xianwei Gui,
  • Lanxiang Wu,
  • Sheng Tian,
  • Hansen Wang,
  • Liang Xie,
  • Wei Wu

DOI
https://doi.org/10.1186/s12883-020-01780-7
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background Post-stroke depression (PSD) is a mood disorder characterized by depression and anhedonia caused by stroke. Metabolomics identified metabolites associated with PSD, but previous studies are based on gas chromatography (GC)/mass spectrometry (MS). This study aimed to perform a liquid chromatography (LC)-MS-based metabolomics study of the plasma metabolite profiles between patients with PSD and controls. Methods This was a prospective study of patients with stroke enrolled between July and December 2017 at the Second Affiliated Hospital of Nanchang University. Patients were grouped as Hamilton Depression Rating Scale > 7 (PSD) or 0.05). There were six differential metabolites between the PSD and stroke groups, of which three metabolites were increased and three were decreased. Compared with the control group, p-chlorophenylalanine (Log2FC = 1.37, P = 0.03), phenylacetyl glutamine (Log2FC = 0.21, P = 0.048), and DHA (Log2FC = 0.77, P = 0.01) levels were higher in the PSD group, while betaine (trimethylglycine) (Log2FC = − 0.79, P = 0.04), palmitic acid (Log2FC = − 0.51, P = 0.001), and MHPG-SO4 (Log2FC = − 2.37, P = 0.045) were decreased. Conclusion Plasma metabolomics showed that amino acid metabolism (phenylacetyl glutamine, p-chlorophenylalanine, trimethylglycine), lipid metabolism (DHA, palmitic acid, trimethylglycine), and oxidative stress (DHA, palmitic acid, trimethylglycine) were associated with PSD. These results could help to reveal the pathophysiological mechanism of PSD and eventually identify treatment targets.

Keywords