AUTEX Research Journal (Dec 2014)
Light Conversion and Scattering in UV Protective Textiles
Abstract
The primary cause of skin cancer is believed to be a long exposure to solar ultraviolet radiation (UV-R) crossed with the amount of skin pigmentation in the population. It is believed that in childhood and adolescence 80% of UV-R gets absorbed, whilst in the remaining 20% gets absorbed later in the lifetime. This suggests that proper and early photoprotection may reduce the risk of subsequent occurrence of skin cancer. Textile and clothing are the most suitable interface between environment and human body. It can show UV protection, but in most cases it does not provide full sun screening properties. UV protection ability highly depends on large number of factors such as type of fibre, fabric surface and construction, type and concentration of dyestuff, fluorescent whitening agent (FWA), UV-B protective agents, as well as nanoparticles, if applied. Based on electronically excited state by energy of UV-R (usually 340-370 nm), the molecules of FWAs show the phenomenon of fluorescence giving to white textiles high whiteness of outstanding brightness by reemitting the energy at the blue region (typically 420-470 nm) of the spectrum. By absorbing UV-A radiation, optical brightened fabrics transform this radiation into blue fluorescence, which leads to better UV protection. Natural zeolites are rock-forming, microporous silicate minerals. Applied as nanoparticles to textile surface, it scatters the UV-R resulting in lower UV-A and UV-B transmission. If applied with other UV absorbing agents, e.g. FWAs, synergistic effect occurs. Silicones are inert, synthetic compounds with a variety of forms and uses. It provides a unique soft touch, is very resistant to washing and improves the property of fabric to protect against UV radiation. Therefore, the UV protective properties of cotton fabric achieved by light conversion and scattering was researched in this paper. For that purpose, the stilbene-derived FWAs were applied on cotton fabric in wide concentration range without/with the addition of natural zeolite or silicone- polydimethylsiloxane. UV protection was determined in vitro through ultraviolet protection factor. Additionally, the influence to fabric whiteness and hand was researched
Keywords