Remote Sensing (Sep 2024)
Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers
Abstract
Understanding the relationship between climate, snow cover, and vegetation Net Primary Productivity (NPP) in the Tibetan Plateau (TP) is crucial. However, the role of snow cover in influencing the NPP remains unclear. This study investigates the connection between the NPP and snow phenology (SP) across the TP from 2011 to 2020. Interannual trends were assessed using the Theil–Sen non-parametric regression approach combined with the Mann–Kendall test. Additionally, the pathways through which snow cover affects the NPP, considering various environmental factors, were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). Approximately 10.72% of the TP showed a significant decrease in the NPP, accompanied by advancing trends in the Snow Onset Date (SOD) and Snow End Date (SED), as well as a gradual decrease in the Snow Cover Duration (SCD). The PLS-SEM results reveal that precipitation and soil temperature significantly influenced the NPP, with total effects of 0.309 and 0.206 in the SCD structural equation. Temperature had a relatively strong indirect effect on the NPP through its influence on the SOD and SCD, contributing 16% and 10% to the total effect, respectively. Neglecting the mediating effect of SP underestimates the environmental impact on the NPP. This study highlights how environmental factors influence the NPP through snow cover changes as the biomass increases, thereby enhancing our understanding of SP’s impact on the TP.
Keywords