Crystals (Jun 2023)

Novel Porous Organic Polymer for High-Performance Pb(II) Adsorption from Water: Synthesis, Characterization, Kinetic, and Isotherm Studies

  • Saad Melhi,
  • Eid H. Alosaimi,
  • Belal El-Gammal,
  • Wafa A. Alshahrani,
  • Yasser F. El-Aryan,
  • Hamdan A. Al-Shamiri,
  • Habib Elhouichet

DOI
https://doi.org/10.3390/cryst13060956
Journal volume & issue
Vol. 13, no. 6
p. 956

Abstract

Read online

The aim of the current study was to develop a novel triphenylaniline-based porous organic polymer (TPABPOP-1) by the Friedel–Crafts reaction for the efficient elimination of Pb(II) from an aqueous environment. XPS, FTIR, SEM, TGA, and 13C CP/MAS NMR analyses were applied to characterize the synthesized TPABPOP-1 polymer. The BET surface area of the TPABPOP-1 polymer was found to be 1290 m2/g. FTIR and XPS techniques proved the uptake of Pb(II) was successfully adsorbed onto TPABPOP-1. Using batch methods, Pb(II) ion adsorption on the TPABPOP-1 was studied at different equilibrium times, pH values, initial Pb(II) concentration, adsorption mass, and temperature. The outcomes exhibited that the optimum parameters were t: 180 min, m: 0.02 g, pH: 5, T: 308 K, and [Pb(II)]: 200 mg/L. Nonlinear isotherms and kinetics models were investigated. The Langmuir isotherm model suggested that the uptake of Pb(II) was favorable on the homogeneous surface of TPABPOP-1. Adsorption kinetics showed that the PFO model was followed. Pb(II) removal mechanisms of TPABPOP-1 may include surface adsorption and electrostatic attraction. The uptake capacity for Pb(II) was identified to be 472.20 mg/g. Thermodynamic factors exhibited that the uptake of Pb(II) was endothermic and spontaneous in standard conditions. Finally, this study provides effective triphenylaniline-based porous organic polymers (TPABPOP-1) as a promising adsorbent with high uptake capacity.

Keywords