PLoS ONE (Jan 2019)

Tissue steroid levels in response to reduced testicular estrogen synthesis in the male pig, Sus scrofa.

  • Heidi Kucera,
  • Birgit Puschner,
  • Alan Conley,
  • Trish Berger

DOI
https://doi.org/10.1371/journal.pone.0215390
Journal volume & issue
Vol. 14, no. 4
p. e0215390

Abstract

Read online

Production of steroid hormones is complex and dependent upon steroidogenic enzymes, cofactors, receptors, and transporters expressed within a tissue. Collectively, these factors create an environment for tissue-specific steroid hormone profiles and potentially tissue-specific responses to drug administration. Our objective was to assess steroid production, including sulfated steroid metabolites in the boar testis, prostate, and liver following inhibition of aromatase, the enzyme that converts androgen precursors to estrogens. Boars were treated with the aromatase inhibitor, letrozole from 11 to 16 weeks of age and littermate boars received the canola oil vehicle. Steroid profiles were evaluated in testes, prostate, and livers of 16, 20, and 40 week old boars using liquid chromatography/mass spectrometry. Testis, prostate, and liver had unique steroid profiles in vehicle-treated animals. Only C18 steroid hormones were altered by treatment with the aromatase inhibitor, letrozole; no significant differences were detected in any of the C19 or C21 steroids evaluated. Testis was the only tissue with significantly decreased free estrogens following treatment with the aromatase inhibitor; estrone and estradiol concentrations were lower (p < 0.05) in testes from 16, 20, and 40 week letrozole-treated boars. However, concentrations of the sulfated conjugates, estrone-sulfate and estradiol-sulfate, were significantly decreased (p<0.05) in 16 and 20 week boar testes, prostates, and livers from letrozole-treated boars. Hence, the distribution of estrogens between the free and conjugated forms was altered in a tissue-specific manner following inhibition of aromatase. The results suggest sulfated testicular estrogens are important estrogen precursors for the prostate, potentially enabling peripheral target tissues to synthesize free estrogens in the male pig.