NeuroImage (Jul 2023)
Categorical working memory codes in human visual cortex
Abstract
Working memory contents are represented in neural activity patterns across multiple regions of the cortical hierarchy. A division of labor has been proposed where more anterior regions harbor increasingly abstract and categorical representations while the most detailed representations are held in primary sensory cortices. Here, using fMRI and multivariate encoding modeling, we demonstrate that for color stimuli categorical codes are already present at the level of extrastriate visual cortex (V4 and VO1), even when subjects are neither implicitly nor explicitly encouraged to categorize the stimuli. Importantly, this categorical coding was observed during working memory, but not during perception. Thus, visual working memory is likely to rely at least in part on categorical representations. Significance statement: Working memory is the representational basis for human cognition. Recent work has demonstrated that numerous regions across the human brain can represent the contents of working memory. We use fMRI brain scanning and machine learning methods to demonstrate that different regions can represent the same content differently during working memory. Reading out the neural codes used to store working memory contents, we show that already in sensory cortex, areas V4 and VO1 represent color in a categorical format rather than a purely sensory fashion. Thereby, we provide a better understanding of how different regions of the brain might serve working memory and cognition.