Acta Pharmaceutica Sinica B (Jul 2022)
Generation of αGal-enhanced bifunctional tumor vaccine
- Jian He,
- Yu Huo,
- Zhikun Zhang,
- Yiqun Luo,
- Xiuli Liu,
- Qiaoying Chen,
- Pan Wu,
- Wei Shi,
- Tao Wu,
- Chao Tang,
- Huixue Wang,
- Lan Li,
- Xiyu Liu,
- Yong Huang,
- Yongxiang Zhao,
- Lu Gan,
- Bing Wang,
- Liping Zhong
Affiliations
- Jian He
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Yu Huo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Zhikun Zhang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Yiqun Luo
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Xiuli Liu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Qiaoying Chen
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Pan Wu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Wei Shi
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning 530023, China
- Tao Wu
- The First People's Hospital of Changde City, Changde 415003, China
- Chao Tang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Huixue Wang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Lan Li
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Xiyu Liu
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Yong Huang
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Yongxiang Zhao
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Lu Gan
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China; Corresponding authors.
- Bing Wang
- Department of Spine Surgery, the Second Xiangya Hospital of Central South University, Changsha 410011, China; Corresponding authors.
- Liping Zhong
- National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Biotargeting Theranostics, Guangxi Medical University, Nanning 530021, China; Corresponding authors.
- Journal volume & issue
-
Vol. 12,
no. 7
pp. 3177 – 3186
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis and high mortality. In this study, we demonstrated a novel vaccine targeting HCC and tumor neovascular endothelial cells by fusing recombinant MHCC97H cells expressing porcine α-1,3-galactose epitopes (αGal) and endorphin extracellular domains (END) with dendritic cells (DCs) from healthy volunteers. END+/Gal+-MHCC97H/DC fusion cells induced cytotoxic T lymphocytes (CTLs) and secretion of interferon-gamma (IFN-γ). CTLs targeted cells expressing αGal and END and tumor angiogenesis. The fused cell vaccine can effectively inhibit tumor growth and prolong the survival time of human hepatoma mice, indicating the high clinical potential of this new cell based vaccine.