Remote Sensing (Jan 2020)

Comparison of Different Multispectral Sensors for Photosynthetic and Non-Photosynthetic Vegetation-Fraction Retrieval

  • Cuicui Ji,
  • Xiaosong Li,
  • Huaidong Wei,
  • Sike Li

DOI
https://doi.org/10.3390/rs12010115
Journal volume & issue
Vol. 12, no. 1
p. 115

Abstract

Read online

It is very difficult and complex to acquire photosynthetic vegetation (PV) and non-PV (NPV) fractions (fPV and fNPV) using multispectral satellite sensors because estimations of fPV and fNPV are influenced by many factors, such as background-noise interference of pixel-, spatial-, and spectral-scale effects. In this study, comparisons between Sentinel-2A Multispectral Instrument (S2 MSI), Landsat-8 Operational Land Imager (L8 OLI), and GF1 Wide Field View (GF1 WFV) sensors for retrieving sparse photosynthetic and non-photosynthetic vegetation coverage are presented. The analysis employed a linear spectral-mixture model (LSMM) and nonlinear spectral-mixture model (NSMM) to unmix pixels with different spectral and spatial resolution images based on field endmembers; the estimated endmember fractions were later validated with reference to fraction measurements. The results demonstrated that: (1) with higher spatial and spectral resolution, the S2 MSI sensor had a clear advantage for retrieving PV and NPV fractions compared to L8 OLI and GF1 WFV sensors; (2) through incorporating more red edge (RE) and near-infrared (NIR) bands, the accuracy of NPV fraction estimation could be greatly improved; (3) nonlinear spectral mixing effects were not obvious on the 10−30 m spatial scale for desert vegetation; (4) in arid regions, a shadow endmember is a significant factor for sparse vegetation coverage estimated with remote-sensing data. The estimated NPV fractions were especially affected by the shadow effects and could increase root mean square by 50%. The utilized approaches in the study could effectively assess the performance of major multispectral sensors to extract fPV and fNPV through the novel method of spectral-mixture analysis.

Keywords