Journal of Translational Medicine (Feb 2024)

Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics

  • Guanwen Yang,
  • Jiangting Cheng,
  • Jiayi Xu,
  • Chenyang Shen,
  • Xuwei Lu,
  • Chang He,
  • Jiaqi Huang,
  • Minke He,
  • Jie Cheng,
  • Hang Wang

DOI
https://doi.org/10.1186/s12967-024-04848-x
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Background Clear cell renal cell carcinoma is a prototypical tumor characterized by metabolic reprogramming, which extends beyond tumor cells to encompass diverse cell types within the tumor microenvironment. Nonetheless, current research on metabolic reprogramming in renal cell carcinoma mostly focuses on either tumor cells alone or conducts analyses of all cells within the tumor microenvironment as a mixture, thereby failing to precisely identify metabolic changes in different cell types within the tumor microenvironment. Methods Gathering 9 major single-cell RNA sequencing databases of clear cell renal cell carcinoma, encompassing 195 samples. Spatial transcriptomics data were selected to conduct metabolic activity analysis with spatial localization. Developing scMet program to convert RNA-seq data into scRNA-seq data for downstream analysis. Results Diverse cellular entities within the tumor microenvironment exhibit distinct infiltration preferences across varying histological grades and tissue origins. Higher-grade tumors manifest pronounced immunosuppressive traits. The identification of tumor cells in the RNA splicing state reveals an association between the enrichment of this particular cellular population and an unfavorable prognostic outcome. The energy metabolism of CD8+ T cells is pivotal not only for their cytotoxic effector functions but also as a marker of impending cellular exhaustion. Sphingolipid metabolism evinces a correlation with diverse macrophage-specific traits, particularly M2 polarization. The tumor epicenter is characterized by heightened metabolic activity, prominently marked by elevated tricarboxylic acid cycle and glycolysis while the pericapsular milieu showcases a conspicuous enrichment of attributes associated with vasculogenesis, inflammatory responses, and epithelial–mesenchymal transition. The scMet facilitates the transformation of RNA sequencing datasets sourced from TCGA into scRNA sequencing data, maintaining a substantial degree of correlation. Conclusions The tumor microenvironment of clear cell renal cell carcinoma demonstrates significant metabolic heterogeneity across various cell types and spatial dimensions. scMet exhibits a notable capability to transform RNA sequencing data into scRNA sequencing data with a high degree of correlation.

Keywords