Biosensors (Feb 2024)

Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-<span style="font-variant: small-caps">l</span>-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers

  • Chuanxiang Zhang,
  • Song Li,
  • Lingxiao Tang,
  • Shuo Li,
  • Changchun Hu,
  • Dan Zhang,
  • Long Chao,
  • Xueying Liu,
  • Yimin Tan,
  • Yan Deng

DOI
https://doi.org/10.3390/bios14030121
Journal volume & issue
Vol. 14, no. 3
p. 121

Abstract

Read online

Development of an efficient technique for accurate and sensitive dibutyl phthalate (DBP) determination is crucial for food safety and environment protection. An ultrasensitive molecularly imprinted polymers (MIP) voltammetric sensor was herein engineered for the specific determination of DBP using poly-l-lysine/poly(3,4-ethylenedioxythiophene)/porous graphene nanocomposite (PLL/PEDOT−PG) and poly(o-phenylenediamine)-imprinted film as a label-free and sensing platform. Fabrication of PEDOT−PG nanocomposites was achieved through a simple liquid–liquid interfacial polymerization. Subsequently, poly-l-lysine (PLL) functionalization was employed to enhance the dispersibility and stability of the prepared PEDOT−PG, as well as promote its adhesion on the sensor surface. In the presence of DBP, the imprinted poly(o-phenylenediamine) film was formed on the surface of PLL/PEDOT−PG. Investigation of the physical properties and electrochemical behavior of the MIP/PLL/PEDOT−PG indicates that the incorporation of PG into PEDOT, with PLL uniformly wrapping its surface, significantly enhanced conductivity, carrier mobility, stability, and provided a larger surface area for specific recognition sites. Under optimal experimental conditions, the electrochemical response exhibited a linear relationship with a logarithm of DBP concentration within the range of 1 fM to 5 µM, with the detection limit as low as 0.88 fM. The method demonstrated exceptional stability and repeatability and has been successfully applied to quantify DBP in plastic packaging materials.

Keywords