Biomedicines (Jun 2021)
Probiotic <i>Bifidobacterium bifidum</i> G9-1 Has a Preventive Effect on the Acceleration of Colonic Permeability and M1 Macrophage Population in Maternally Separated Rats
Abstract
Although probiotics may be useful for the treatment of irritable bowel syndrome (IBS), it is unclear how probiotics play a role in colonic mucosal integrity and immunity. Here, we aimed to investigate the effect of Bifidobacterium bifidum G9-1 (BBG9-1) on colonic mucosal integrity and macrophage behavior in rats subjected to maternal separation (MS) as a model of IBS. MS pups were individually separated from their mother rats, and a proportion of the MS rats were orally administered BBG9-1. The colonic mucosal permeability was evaluated by Ussing chamber assay. The expression of tight junction proteins and cytokines and the population of CD80-positive cells was examined in the colonic tissues by real-time reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Caco2 cells were stimulated with cytokines and the transepithelial electric resistance (TEER) was measured. MS rats showed significantly higher colonic permeability and lower claudin 4 expression in the colonic epithelium relative to controls. The number of CD80-positive macrophages was significantly increased in the colonic mucosa of MS rats, accompanied by the increase of IL-6 and IFN-γ expression. BBG9-1 treatment ameliorated the increase of M1 macrophage and IL-6/IFN-γ expression in the colonic tissue of MS rats. Simultaneously, BBG9-1 treatment improved the enhanced mucosal permeability and the decreased claudin 4 expression in the colon of MS rats. IL-6 and IFN-γ, whose expression is enhanced in the colon of MS rats, significantly decreased TEER in Caco2 cells in vitro. Probiotic BBG9-1 has a preventive effect on the acceleration of colonic permeability and M1 macrophage population in maternally separated rats.
Keywords