Journal of Renewable Energy and Environment (Jan 2022)
Assessment of Effect of Different Parameters on Temperature Distribution in Chemical Looping Combustor: Experimental and Numerical Approaches
Abstract
The greenhouse problem has a significant effect on our communities, health, and climate. So, the capturing techniques for CO2 remain the focus of attention these days. In this work, a Chemical Looping Combustor (CLC) was designed and fabricated with the major geometric sizes at the Faculty of Engineering, Suez Canal University. The system involves two interconnected fluidized beds. Nickel powder with 150 µm diameter as well as brown coal and liquefied petroleum gas were used as oxygen carrier, solid fuel, and gaseous fuel, respectively. The temperature distributions along the fuel reactor for LPG flow rates of 11 and 18 LPM with and without using nickel powder as well as using preheated reactor were discussed and evaluated. The effects of brown coal diameter change with and without using nickel powder were studied. The CO and CO2 concentrations at combustion gases with and without using nickel powder were conducted for LPG and brown coal fuels. A mathematical model was used to simulate the combustion in CLC using combustion and energy code. The obtained results showed that using nickel powder improved the combustion process and in case of using LPG, the flame color changed to blue which is the color of the complete combustion flame. The CO was reduced by 48.4 % and CO2 was augmented by 66.5 %. In case of using brown coal as solid fuel, CO was reduced by 53.7 % and CO2 was increased by 71.9 %. Finally, there is good agreement between the experimental and numerical results based on the determination coefficient.
Keywords