Atmospheric Measurement Techniques (Jun 2024)

Comparison of the LEO and CPMA-SP2 techniques for black-carbon mixing-state measurements

  • A. Naseri,
  • J. C. Corbin,
  • J. S. Olfert

DOI
https://doi.org/10.5194/amt-17-3719-2024
Journal volume & issue
Vol. 17
pp. 3719 – 3738

Abstract

Read online

It is necessary to measure the mixing states of light-absorbing carbon (LAC) particles to reduce uncertainties in climate forcing due to particulate from wildfires and biomass combustion. For refractory LAC (normally called refractory black carbon; rBC), such measurements can be made using the single particle soot photometer (SP2). The SP2 measures the incandescent mass of individual particles heated by a 1064 nm laser. The SP2 also monitors single-particle light scattering from rBC plus internally mixed material (e.g., coatings of volatile particulate matter). rBC mixing states can be estimated from SP2 measurements by combining the scattering and incandescence signals. This is the basis of the published methods known as (i) scattering–incandescence lag-time, (ii) leading-edge only (LEO), and (iii) normalized derivative methods. More recently, the tandem centrifugal particle mass analyzer–single particle soot photometer (CPMA-SP2) method has been developed. The CPMA-SP2 method does not rely on the SP2 scattering signals and, therefore truly measures the rBC mass fraction, with no assumptions regarding particle composition or morphology. In this study, we provide the first quantitative comparison of the light-scattering and CPMA-SP2 methods for measuring mixing state. We discuss the upper and lower limits of detection (in terms of both rBC and coatings), temporal resolution, role of counting statistics, and errors associated with the measurements. We use a data set of atmospheric particles sampled at a regional background site (Kamloops about 350 km northeast of Vancouver, British Columbia, Canada), where the majority of rBC was emitted by seasonal wildfires. In the overall comparison of measurement methods, the CPMA-SP2 method is found to have significantly better systematic uncertainties than the light-scattering methods for wildfire smoke. For example, the light-scattering methods could not quantify coatings on half of the rBC particles, because their light-scattering signals were below the SP2 detection limit. Consequently, the bias in SP2-only estimates of rBC mixing states depends on the size distribution of the rBC particles. Although more accurate, CPMA-SP2 measurements require significantly more time to acquire, whereas SP2-only light-scattering analyses (both LEO and lag-time) can provide near real-time qualitative information representing large rBC particles.