Scientific Reports (Aug 2024)
Integrative approach to monitoring metazoan diversity and distribution in two Mediterranean coastal sites through morphology and organismal eDNA
Abstract
Abstract Marine and coastal ecosystems respond to climate change in various ways, such as the type of ecosystem, the species composition, interactions, and distribution, and the effect of local stressors. Metazoan organisms, particularly zooplankton, are important indicators for monitoring the effects climate-driven warming in marine coastal ecosystems over the long term. In this study, the diversity and distribution of zooplankton communities in the Mediterranean Sea (Canyon Dohrn and LTER-MareChiara, Gulf of Naples), a known biodiversity and climate changes hotspot, have been assessed using the integration of morphological-based identification and organismal eDNA. Our findings showed that the multi-locus strategy including the mitochondrial cytochrome c oxidase I (COI) gene and the hypervariable region V9 of the 18S rDNA (18S V9) as targets, improved the taxonomic overview, with the COI gene being more effective than the 18S V9 region for metazoans at the species level. However, appendicularians were detected only with the 18S V9 region. Overall, organismal eDNA is a powerful approach for revealing hidden biodiversity, especially for gelatinous and meroplankton components, and provided new insights into biodiversity patterns. The ecological importance of calanoid copepods in coastal ecosystems has been confirmed. In contrast, the discovery of 13 new metazoan records in the Mediterranean Sea, including two non-indigenous copepod species, suggested that local stressors affect zooplankton community structure and resilience, highlighting the importance of biomonitoring and protecting marine coastal ecosystems.
Keywords