European Journal of Histochemistry (Mar 2014)
Expression level of quiescin sulfhydryl oxidase 1 (QSOX1) in neuroblastomas
Abstract
Neuroblastoma is the most common extracranial solid malignant tumor observed during childhood. Although these tumors can sometimes regress spontaneously or respond well to treatment in infants, genetic alterations that influence apoptosis can, in some cases, confer resistance to chemotherapy or result in relapses and adversely affect prognosis for these patients. The aim of this study was to correlate immunohistochemical expression of the protein QSOX1 (quiescin sulfhydryl oxidase 1) in samples obtained from untreated neuroblastomas with the patients’ clinical and pathological prognostic factors and clinical course. Neuroblastoma samples (n=23) obtained from histology blocks were arrayed into tissue microarrays and analysed by immunohistochemistry. The cases were classified according to the following clinical and pathological prognostic factors: age at diagnosis greater or less than/equal to 18 months; location of the lesion at diagnosis (abdominal or extra-abdominal); presence or absence of bone-marrow infiltration; tumor differentiation (well or poorly differentiated); Shimada histopathologic classification (favourable or unfavourable); state of the tumor extracellular matrix (Schwannian-stroma rich or poor); amplification of the MYCN oncogene; and clinical course (dead or alive with or without relapses/residual lesions). Twelve of the cases were female, 9 children were over 18 months old, 9 cases presented with extra-abdominal tumors and 9 cases exhibited tumors with unfavourable histologies. Fifteen patients underwent bone-marrow biopsy, and 4 of these were positive for metastasis. Nine patients died. The higher immunohistochemical expression of QSOX1 was more common in well-differentiated samples (P=0.029), in stroma-rich samples (P=0.029) and in samples from patients with a high prevalence of relapses/residual disease. The functions of QSOX1 include extracellular matrix maturation and the induction of apoptosis. Therefore, QSOX1 may be involved in neuroblastoma differentiation and regression and may thus function as a biomarker for identifying risk groups for this neoplasm.
Keywords