Engineering Proceedings (Oct 2023)
Cylindrical Sandwich Shells for Civil Engineering Applications
Abstract
The literature is not abundant with mechanical characterizations of cylindrical shells for civil engineering applications, especially in terms of impact response. In this context, this study intends to evaluate the impact response of cylindrical sandwich shells produced by various types of fibers. Analysis was performed on three alternative configurations: carbon fibers only, carbon fibers and glass, and carbon fibers and basalt. All configurations were tested for static and impact strength. It was concluded that the constituents of the cylindrical sandwich shells are determinants of both static and impact strength. In terms of compressive properties, the lowest displacement (4.4 mm) and highest compressive strength (873 N) and stiffness (354 N/mm) are attributed to configuration 6C. However, the incorporation of basalt fibers decreased these properties to the lowest values, and reductions of 22% and 44% were found for the compressive strength and stiffness, respectively, while the displacement increased by around 66%. On the other hand, in terms of impact, significant benefits were achieved with the introduction of glass fibers. Compared with configurations 6C and 2C+2B+2C, for instance, the elastic recuperation was 25% and 64.6% higher, respectively.
Keywords