Frontiers in Medicine (Feb 2019)
Big Health Data and Cardiovascular Diseases: A Challenge for Research, an Opportunity for Clinical Care
Abstract
Cardiovascular disease (CVD) accounts for the majority of death and hospitalization, health care expenditures and loss of productivity in developed country. CVD research, thus, plays a key role for improving patients' outcomes as well as for the sustainability of health systems. The increasing costs and complexity of modern medicine along with the fragmentation in healthcare organizations interfere with improving quality care and represent a missed opportunity for research. The advancement in diagnosis, therapy and prognostic evaluation of patients with CVD, indeed, is frustrated by limited data access to selected small patient populations, not standardized nor computable definition of disease and lack of approved relevant patient-centered outcomes. These critical issues results in a deep mismatch between randomized controlled trials and real-world setting, heterogeneity in treatment response and wide inter-individual variation in prognosis. Big data approach combines millions of people's electronic health records (EHR) from different resources and provides a new methodology expanding data collection in three direction: high volume, wide variety and extreme acquisition speed. Large population studies based on EHR holds much promise due to low costs, diminished study participant burden, and reduced selection bias, thus offering an alternative to traditional ascertainment through biomedical screening and tracing processes. By merging and harmonizing large data sets, the researchers aspire to build algorithms that allow targeted and personalized CVD treatments. In current paper, we provide a critical review of big health data for cardiovascular research, focusing on the opportunities of this largely free data analytics and the challenges in its realization.
Keywords