International Journal of Retina and Vitreous (Jun 2022)

Effect of retinol and α-tocopherol supplementation on photoreceptor and retinal ganglion cell apoptosis in diabetic rats model

  • Andi Muhammad Ichsan,
  • Agussalim Bukhari,
  • Subehan Lallo,
  • Upik Anderiani Miskad,
  • Andi Afdal Dzuhry,
  • Itzar Chaidir Islam,
  • Habibah Setyawati Muhiddin

DOI
https://doi.org/10.1186/s40942-022-00392-2
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Diabetic retinopathy (DR) is the most common microvascular complication of diabetes. Retinol and α-tocopherol of diabetic models prevent the damage of photoreceptor and retinal ganglion cells (RGC) caused by hyperglycemia. Objective This study aims to examine the effect of retinol and α-tocopherol on photoreceptor and RGC densities and the expression of caspase-3 and -7 on the retinal layers of the diabetic rat model. Methods Alloxan 150 mg/kg body weight single dose was used to develop animal models, which were separated into eight groups. These consist of one group without intervention (group 1), one positive control with only induced alloxan (group 2), and others receiving retinol (group 3 and 6), α-tocopherol (group 4 and 7), or their combination (group 5 and 8). Furthermore, histopathological examination was performed using Hematoxylin–Eosin staining to evaluate the photoreceptor and RGC densities, while immunohistochemistry staining evaluated the caspase-3 and -7 expressions. Results In the treatment group, the highest and lowest densities were identified in diabetic rats given α-tocopherol (group 7) and retinol (group 3) respectively. The caspase-3 and -7 expression showed that the group given α-tocopherol (group 7) had the lowest value. Conclusion In diabetic rats, retinol and α-tocopherol compounds maintained densities and prevented photoreceptor and RGC death. However, α-tocopherol was more promising than retinol or combinations in the prevention of retinal cells apoptosis.

Keywords