Cell Reports (Jun 2019)
Immature Low-Density Neutrophils Exhibit Metabolic Flexibility that Facilitates Breast Cancer Liver Metastasis
Abstract
Summary: Neutrophils are phenotypically heterogeneous and exert either anti- or pro-metastatic functions. We show that cancer-cell-derived G-CSF is necessary, but not sufficient, to mobilize immature low-density neutrophils (iLDNs) that promote liver metastasis. In contrast, mature high-density neutrophils inhibit the formation of liver metastases. Transcriptomic and metabolomic analyses of high- and low-density neutrophils reveal engagement of numerous metabolic pathways specifically in low-density neutrophils. iLDNs exhibit enhanced global bioenergetic capacity, through their ability to engage mitochondrial-dependent ATP production, and remain capable of executing pro-metastatic neutrophil functions, including NETosis, under nutrient-deprived conditions. We demonstrate that NETosis is an important neutrophil function that promotes breast cancer liver metastasis. iLDNs rely on the catabolism of glutamate and proline to support mitochondrial-dependent metabolism in the absence of glucose, which enables sustained NETosis. These data reveal that distinct pro-metastatic neutrophil populations exhibit a high degree of metabolic flexibility, which facilitates the formation of liver metastases. : Hsu et al. demonstrate that tumor-derived G-CSF, in concert with additional factors, mobilizes immature low-density neutrophils (iLDNs) that promote breast cancer liver metastasis. iLDNs are able to perform pro-metastatic functions under metabolically challenging conditions, such as low glucose, due to their enhanced global bioenergetic capacity. Keywords: neutrophil plasticity, metastasis, metabolic flexibility, NETosis