Remote Sensing (Jun 2024)

Spatiotemporal Variabilities in Evapotranspiration of Alfalfa: A Case Study Using Remote Sensing METRIC and SSEBop Models and Eddy Covariance

  • Zada M. Tawalbeh,
  • A. Salim Bawazir,
  • Alexander Fernald,
  • Robert Sabie

DOI
https://doi.org/10.3390/rs16132290
Journal volume & issue
Vol. 16, no. 13
p. 2290

Abstract

Read online

Prolonged drought exacerbated by climate change in the Mesilla Valley, one of the major agricultural areas of New Mexico, USA, is causing a shortage of surface water from the Rio Grande for irrigation. Farmers in the Valley are using groundwater for irrigation and complementing it with limited surface water from the river (Rio Grande). Managing irrigation water better is vital to sustaining agriculture in the Valley. Remote sensing (RS)-based crop evapotranspiration (ETa) models offer significant advantages over traditional methods. The ET maps generated by these RS models provide valuable information that can be used to manage irrigation water and crops in water-scarce areas. This study used METRIC and SSEBop RS models to map the ET of alfalfa on a private farm that is managed as commonly practiced in the Valley. The integrated ET values of the two models are compared to those of the ETa measured using the eddy covariance method. The comparison showed that 91.55% of the variability in SSEBop ETa estimates can be explained by the variability in the METRIC ETa estimates, and the variability in eddy covariance ETa can explain 93.07% of the variability in METRIC ETa and 86.01% in the SSEBop Eta estimates. Both METRIC and SSEBop reflected the ETa of alfalfa during full growth and harvesting periods. However, the absolute percent mean relative difference (MRD) of ET was higher for two out of three cuttings by SSEBop (>32%) compared to those for METRIC and eddy covariance. The spatiotemporal variabilities in crop ET estimates using METRIC and SSEBop showed a need to improve on-farm irrigation conveyance and on-the-field irrigation efficiency. Overall, RS models can provide spatiotemporal maps of ET that can be used for decision-making to manage irrigation water better and improve crop yield on a field, farm, and regional scale.

Keywords