Polymers (Nov 2022)

Silk Fibroin-<i>g</i>-Polyaniline Platform for the Design of Biocompatible-Electroactive Substrate

  • Elsa Veronica Flores-Vela,
  • Alain Salvador Conejo-Dávila,
  • Claudia Alejandra Hernández-Escobar,
  • Rocio Berenice Dominguez,
  • David Chávez-Flores,
  • Lillian V. Tapia-Lopez,
  • Claudia Piñon-Balderrama,
  • Anayansi Estrada-Monje,
  • María Antonia Luna-Velasco,
  • Velia Carolina Osuna,
  • Erasto Armando Zaragoza-Contreras

DOI
https://doi.org/10.3390/polym14214653
Journal volume & issue
Vol. 14, no. 21
p. 4653

Abstract

Read online

The structural modification of biopolymers is a current strategy to develop materials with biomedical applications. Silk fibroin is a natural fiber derived from a protein produced by the silkworm (Bombyx mori) with biocompatible characteristics and excellent mechanical properties. This research reports the structural modification of silk fibroin by incorporating polyaniline chain grafts through a one-pot process (esterification reaction/oxidative polymerization). The structural characterization was achieved by 1H-NMR and FT-IR. The morphology was studied by scanning electron microscopy and complemented with thermogravimetric analysis to understand the effect of the thermal stability at each step of the modification. Different fibroin silk (Fib): polyaniline (PAni) mass ratios were evaluated. From this evaluation, it was found that a Fib to PAni ratio of at least 1 to 0.5 is required to produce electroactive polyaniline, as observed by UV-vis and CV. Notably, all the fibroin-g-PAni systems present low cytotoxicity, making them promising systems for developing biocompatible electrochemical sensors.

Keywords