PLoS Computational Biology (May 2014)

Arterial stiffening provides sufficient explanation for primary hypertension.

  • Klas H Pettersen,
  • Scott M Bugenhagen,
  • Javaid Nauman,
  • Daniel A Beard,
  • Stig W Omholt

DOI
https://doi.org/10.1371/journal.pcbi.1003634
Journal volume & issue
Vol. 10, no. 5
p. e1003634

Abstract

Read online

Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.