Energies (Jun 2019)

Study on the Mechanism of Ionic Stabilizers on Shale Gas Reservoir Mechanics in Northwestern Hunan

  • Pinghe Sun,
  • Junyi Zhu,
  • Binkui Zhao,
  • Xinxin Zhang,
  • Han Cao,
  • Mingjin Tian,
  • Meng Han,
  • Weisheng Liu

DOI
https://doi.org/10.3390/en12122453
Journal volume & issue
Vol. 12, no. 12
p. 2453

Abstract

Read online

The shale of the lower Cambrian Niutitang formation in northwestern Hunan is an ideal reservoir for shale gas. There is a close connection between borehole stability and drilling fluid in shale gas drilling. Ionic stabilizer is a new type of stratum consolidation agent that inhibits the hydration expansion of clay minerals and improves mechanical strength of the borehole. The traditional idea of pore wall protection is to use drilling fluid additives to prevent shale from interacting with water. However, ionic stabilizer can change the hydrophilic of clay minerals in shale, making the particles become hydrophobic and dense, therefore, the formation stability can be enhanced simultaneously. The material used in this paper is different from the normal ionic stabilizer, some chemical bonds that have been changed in the new material called enhanced normality ionic (ENI) stabilizer. This paper utilized the shale samples those obtained from Niutitang formation to study the connection between ENI and the mechanical properties of shale. Mechanical tests and microscopic pore tests were performed on different samples which were soaked in water and the ENI with different concentrations. It has been found through tests that ENI can inhibit the development of shale pores, and as the concentration increases, the inhibition increases. In addition, as the ENI concentration increases, the uniaxial compressive strength and Young’s modulus of the shale increase, and the ratio of stability coefficients decreases. It can be concluded that the ENI can improve the mechanical strength of carbon shale, and prevent the development of rock damage. Moreover, it can improve the ability of rock to resist damage, and enhance borehole stability initiatively.

Keywords