Energies (Dec 2021)

A Design Methodology for EV-WPT Systems to Resonate at Arbitrary Given Bands

  • Yong Yin,
  • Yuhua Xiao,
  • Chengliang Wang,
  • Qingsheng Yang,
  • Yahui Jia,
  • Zhijuan Liao

DOI
https://doi.org/10.3390/en15010213
Journal volume & issue
Vol. 15, no. 1
p. 213

Abstract

Read online

Due to the effects of splitting frequency and cross coupling, the resonant frequency of the WPT system usually deviates from the given frequency band, and the system operating at the given frequency band suffers a very low output power. Ensuring that electric vehicle wireless power transfer (EV-WPT) systems operate at a resonant state is the prerequisite for efficient energy transfer. For this purpose, a novel design method by manipulating the eigenstate parameters is proposed in this paper. The proposed system can make a EV-WPT system with arbitrary coil successfully to resonate at any given bands, not just a single band. Therefore, the method designed in this article cannot only eliminate the problem of low power caused by frequency deviation, but also realize the application requirements of multiple frequency bands. Firstly, this article establishes an accurate state space model of an n-coil fully coupled EV-WPT system, and after that, the analytical current response on each circuit is derived. Based on that, a detailed frequency spectrum analysis is presented, along with several essential spectrum parameters’ derivations, including center frequencies and bandwidths. Then, with the center frequency and bandwidth as the design indexes, a novel methodology of designing to make EV-WPT systems achieve resonant-state at arbitrary given bands is derived. Finally, simulation and experimental verification are carried out. Simulation and experimental results show that whether it is a single-band or multi-band system, the accuracy of the value under designed resonant frequency is less than 0.01, which can effectively eliminate the frequency deviation phenomenon and obtain the maximum power output at the given frequency band.

Keywords