Crystals (Jul 2022)

In Vitro Physical Characterizations and Docking Studies on Carvedilol Nanocrystals

  • Jamal Moideen Muthu Mohamed,
  • Ali Alqahtani,
  • Farid Menaa,
  • Saminathan Kayarohanam,
  • Adel Al Fatease,
  • Taha Alqahtani,
  • Ali Alamri,
  • Mohamed El-Sherbiny,
  • Sundarapandian Ramkanth,
  • Ashok Kumar Janakiraman

DOI
https://doi.org/10.3390/cryst12070988
Journal volume & issue
Vol. 12, no. 7
p. 988

Abstract

Read online

The major goal of this investigation was to prepare carvedilol nanocrystals (CRL-NCs) for better solubility, stability, and bioavailability. Using polyvinyl pyrolidine K-30 (PVP) and sodium dodecyl sulphate (SDS) as stabilisers, CRL-NCs were effectively synthesised by emulsion-diffusion, followed by the high-pressure homogenization (HPH) method. The AL classes of phase solubility curves with ideal complexes produced with stabilisers were estimated by thermodynamic parameters. The docking study was performed with the active site of a β-1 adrenoreceptor protein, and the CRLs docking score was revealed as −23.481 Kcal/mol−1. At 25 and 37 °C, the optimum interaction constant was determined for PVP (144 and 176 M−1) and SDS (102 and 121 M−1). The average particle size (PS) of the produced stable CRL-NCs is 58 nm, with a zeta potential of −27.2 ± 2.29 mV, a poly dispersibility index of 0.181 ± 0.012, a percentage yield of 78.7 ± 3.41, drug content of 96.81 ± 3.64%, and entrapment efficiency of 83.61 ± 1.80%. The morphological data also reveals that the CRL-NCs were nearly sphere shaped, with distinct and smooth surfaces. CRL-NCs were studied using X-ray diffraction (XRD), fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC), and the results show no chemical structural alterations, even when PS was reduced. NCs accelerate their in vitro dissolution release rate by about three times faster than CRL-MCs (microcrystals). When kept at 4 °C, the CRL-NCs exhibit good physical stability for six months. As a result, the CRL-NCs created via emulsion-diffusion followed by HPH with stabilisers can be used to increase the solubility, stability, and bioavailability of poorly soluble or lipophilic drugs.

Keywords