Heliyon (Jan 2023)

Soils with more clay and dense vegetation were rich in soil carbon along Wadi Al-Sharaea, Makkah, Saudi Arabia

  • Hanan E.M. Osman,
  • Abeer A. Elaidarous,
  • Mohamed H. El-Morsy,
  • Ebrahem M. Eid,
  • Amr E. Keshta

Journal volume & issue
Vol. 9, no. 1
p. e12988

Abstract

Read online

In arid ecosystems, lack of vegetation and nutrients can negatively impact soil carbon (C) content. In the current study, our goals were to assess soil C stocks to a depth of 50 cm in an arid ecosystem (Wadi Al-Sharaea, Saudi Arabia) and determine their relation to different vegetation cover. To address our research objective, a total of 102 quadrate (randomly selected) were established along the desert wadi. Soil samples were collected to a depth of 50 cm with 5 cm interval, then Soil Bulk Density (SBD, g/cm3), Soil Organic C Content (SOC, g C/kg), and stocks (kg C/m2) were estimated. Both soil mechanical and chemical analyses were conducted for a composite soil sample. Study sites were categorized based on their visual vegetation cover (VC) percentage (%) into three major groups: 1) scarce vegetation cover (VC less than 25%); 2) medium vegetation cover (VC is higher than 25% and less than 75%); and lastly 3) dense vegetation cover (VC is higher than 75%). Soils were characterized by higher sand content (48.2%, both fine and coarse compiled) than silt (36.7 ± 1.64%) or clay (10.1 ± 1.28%). There were significant differences among soil Calcium (Ca) and Potassium (K) content (p < 0.05), while those plant communities with medium vegetation cover showed the highest soil content of Ca and K (1.7 ± 0.24 and 0.2 ± 0.03 meq/l, respectively). Plant communities with dense vegetation cover had the lowest SBD (1.96 ± 0.03 g/cm3) and the highest SOC stocks (14.9 ± 2.1 kg C/m2). Moreover, our data analyses indicated that SBD and SOC content had strong and negative correlation, where soils with dense vegetation cover had the most significant correlation (R2 = 0.95). Our results recommend that soil carbon stocks to a depth of 50 cm based on different vegetation cover of arid ecosystems should be implemented on global soil carbon budget to better elucidate factors controlling SOC content at the regional and global scales.

Keywords