Advanced Science (Nov 2022)

Tuning Ambipolarity of the Conjugated Polymer Channel Layers of Floating‐Gate Free Transistors: From Volatile Memories to Artificial Synapses

  • Yu‐Ting Yang,
  • Ying‐Sheng Wu,
  • Waner He,
  • Hsin‐Chiao Tien,
  • Wei‐Chen Yang,
  • Tsuyoshi Michinobu,
  • Wen‐Chang Chen,
  • Wen‐Ya Lee,
  • Chu‐Chen Chueh

DOI
https://doi.org/10.1002/advs.202203025
Journal volume & issue
Vol. 9, no. 31
pp. n/a – n/a

Abstract

Read online

Abstract Three‐terminal synaptic transistor has drawn significant research interests for neuromorphic computation due to its advantage of facile device integrability. Lately, bulk‐heterojunction‐based synaptic transistors with bipolar modulation are proposed to exempt the use of an additional floating gate. However, the actual correlation between the channel's ambipolarity, memory characteristic, and synaptic behavior for a floating‐gate free transistor has not been investigated yet. Herein, by studying five diketopyrrolopyrrole–benzotriazole dual‐acceptor random conjugated polymers, a clear correlation among the hole/electron ratio, the memory retention characteristic, and the synaptic behavior for the polymer channel layer in a floating‐gate free transistor is described. It reveals that the polymers with balanced ambipolarity possess better charge trapping capabilities and larger memory windows; however, the high ambipolarity results in higher volatility of the memory characteristics, namely poor memory retention capability. In contrast, the polymer with a reduced ambipolarity possesses an enhanced memory retention capability despite showing a reduced memory window. It is further manifested that this enhanced charge retention capability enables the device to present artificial synaptic characteristics. The results highlight the importance of the channel's ambipolarity of floating‐gate free transistors on the resultant volatile memory characteristics and synaptic behaviors.

Keywords