Journal of Experimental & Clinical Cancer Research (Jun 2018)

Prolonged inhibition of class I PI3K promotes liver cancer stem cell expansion by augmenting SGK3/GSK-3β/β-catenin signalling

  • Fengchao Liu,
  • Xiaoling Wu,
  • Xin Jiang,
  • Yanzhi Qian,
  • Jian Gao

DOI
https://doi.org/10.1186/s13046-018-0801-8
Journal volume & issue
Vol. 37, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Serum and glucocorticoid-regulated kinase 3 (SGK3) has been reported to play an important role in tumour progression, but its role in cancer stem cells (CSCs) remains obscure. The phosphoinositide 3-kinase (PI3K) pathway is considered a hallmark of cancer. Although many PI3K pathway-targeted therapies have been tested in oncology trials, the results are not satisfactory. Methods We used spheroids cultured in serum-free culture medium and MicroBead isolation to obtain liver CSCs. Spheroid formation assay and flow cytometric analysis were performed to investigate liver CSC expansion. Real-time polymerase chain reaction (PCR), western blot and immunofluorescence were used to assess gene expression in cell lines. Results We found that SGK3 is preferentially activated in liver CSCs. Upregulated SGK3 significantly increases the expansion of liver CSCs. Conversely, suppression of SGK3 in human hepatocarcinoma (HCC) cells had an opposite effect. Mechanistically, SGK3 promoted β-catenin accumulation by suppressing GSK-3β-mediated β-catenin degradation in liver CSCs, and then promoting the expansion of liver CSCs. Prolonged treatment of HCC cells with class I PI3K inhibitors leads to activation of SGK3 and expansion of liver CSCs. Inhibition of hVps34 can block SGK3 activity and suppress liver CSC expansion induced by PI3K inhibitors. More importantly, we also found that prolonged treatment of HCC cells with PI3K inhibitors stimulates the β-catenin signalling pathway via activation of SGK3. Conclusions Prolonged inhibition of class I PI3K promotes liver CSC expansion by augmenting SGK3-dependent β-catenin stabilisation, and effective inhibition of SGK3 signalling may be useful in eliminating liver CSCs and in PI3K pathway-targeted cancer therapies.

Keywords