Nanotechnology Reviews (Dec 2019)
Cotton fibres functionalized with plasmonic nanoparticles to promote the destruction of harmful molecules: an overview
Abstract
Self-decontaminating cotton fabrics were designed, produced and characterized aiming at the decomposition of harmful molecules namely chemical warfare agents (CWAs) by photocatalysis under day light or indoor illumination. This was achieved through the creation of a hybrid organic-inorganic nanostructured textile composed of a thin layer of TiO2 nanoparticles (NPs) generated in situ and chemically immobilised on the cellulose chains of cotton fibres. TiO2 NPs were converted into anatase by a hydrothermal procedure at low temperature around 100°C. The fabrics covered with TiO2 nanoparticles were examined in terms of their chemical composition, morphology, crystallinity, ageing, robustness and photocatalytic properties. In the whole preparation of the photocatalytic fabrics, only environment-friendly solvents (water or alcohol) were used. One of the important achievements in this work was providing fabrics with suitable photocatalytic activity under visible light. This was reached through plasmonic photocatalysis by generating noble metal nanoparticles (Au, Ag) and/ or their halides (AgBr, AgCl) neighbouring or topping the TiO2 NPs in the fabrics. The kinetics of degradation of the different systems were analysed and proved that the resulting fabrics could efficiently decompose, under visible light, organic dyes and dimethyl methylphosphonate (DMMP), a CWA simulant.
Keywords