Informador Técnico (Jun 2013)

Artificial neural network based model to calculate the environmental variables of the tobacco drying process; Modelo basado en redes neuronales artificiales para el cálculo de parámetros ambientales en el proceso de curado del tabaco

  • Víctor Martínez-Martínez,
  • Carlos Baladron,
  • Jaime Gomez-Gil,
  • Gonzalo Ruiz-Ruiz,
  • Luis M Navas-Gracia,
  • Javier M Aguiar,
  • Belen Carro

Journal volume & issue
Vol. 77, no. 1
pp. 35 – 46

Abstract

Read online

This paper presents an Artificial Neural Network (ANN) based model for environmental variables related to the tobacco drying process. A fitting ANN was used to estimate and predict temperature and relative humidity inside the tobacco dryer: the estimation consists of calculating the value of these variables in different locations of the dryer and the prediction consists of forecasting the value of these variables with different time horizons. The proposed model has been validated with temperature and relative humidity data obtained from a real tobacco dryer using a Wireless Sensor Network (WSN). On the one hand, an error under 2% was achieved, obtaining temperature as a function of temperature and relative humidity in other locations in the estimation task. Besides, an error around 1.5 times lower than the one obtained with an interpolation method was achieved in the prediction task when the temperature inside the tobacco mass was predicted with time horizons over 2.5 hours as a function of its present and past values. These results show that ANN-based models can be used to improve the tobacco drying process because with these types of models the value of environmental variables can be predicted in the near future and can be estimated in other locations with low errors.

Keywords