Journal of Chemistry (Jan 2020)
The Effect of Limited Proteolysis by Trypsin on the Formation of Soy Protein Isolate Nanofibrils
Abstract
Nanofibril system constructed by protein self-assembly is widely used in the food industry because of purposive functional properties. Soy protein isolate nanofibrils (SPINs) were reported to form via heating at pH 2.0. In this research, the soy protein isolate (SPI) hydrolysate prepared by trypsin was used as a raw material for the formation of nanofibrils called soy protein isolate hydrolysate nanofibrils (SPIHNs). Microscopic images demonstrated the formation of two nanofibrils. Based on circular dichroism spectroscopy and Thioflavin T (ThT) fluorescence spectral, we concluded that β-sheet played an important role in SPIN and SPIHN’s structural composition. At the same time, the α-helix in SPI had not been destroyed, thereby favoring the formation of SPIHN. The surface hydrophobicity of SPIHN continued to increase during the heating process and reached the highest value when heating 8 h. SDS-PAGE analysis showed that peptides produced by enzyme-modified SPI affected the formation of SPIHN. These results proposed that enzymatic hydrolysis prior to acidic during fibrillation process affected the fibrillation of SPI, and the peptides formed by enzymatic hydrolysis were more efficient for the self-assembly process. This study will provide a theoretical basis for the future research of SPI nanofibril functionality.