Geochemical Transactions (Jan 2010)
Metathesis in the generation of low-temperature gas in marine shales
Abstract
Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control) or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis) as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1)*(C3)]/[(C2)2]), and between these hydrocarbons and n-butane, Q* (K = [(C1)*(n-C4)]/[(C2)*(C3)]), reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW). Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission) as gas generation creates open catalytic sites ([ ]): [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.