Cellular Physiology and Biochemistry (Jul 2015)

Eruberin A, a Natural Flavanol Glycoside, Exerts Anti-Fibrotic Action on Pancreatic Stellate Cells

  • Siu Wai Tsang,
  • Hong-Jie Zhang,
  • Ye-Gao Chen,
  • Kathy Ka-Wai Auyeung,
  • Zhao-Xiang Bian

DOI
https://doi.org/10.1159/000430204
Journal volume & issue
Vol. 36, no. 6
pp. 2433 – 2446

Abstract

Read online

Background: Eruberin A (2, 3-dehydroflavonoid), a flavanol glycoside isolated from Pronephrium penangianum, has been used as a blood-nourishing folk medicine for centuries; however, it indeed possesses a variety of other health-promoting benefits including anti-fibrotic bioactivity. Activation of pancreatic stellate cells (PSCs) is the key initiating step in pancreatic fibrosis, which is a characteristic feature associated with chronic pancreatitis and pancreatic adenocarcinoma. Methods: The anti-fibrotic effect of eruberin A and the underlying mechanisms of its anti-fibrotic action in LTC-14 cells, which retained essential characteristics and morphological features of primary PSCs, were examined by means of real-time polymerase chain reactions, Western blotting and immunostaining. Results: The application of eruberin A (20 µg/ml) effectively inhibited the expression levels of fibrotic mediators namely alpha-smooth muscle actin, fibronectin and type I-collagen, so as the sonic hedgehog signaling pathway components post transforming growth factor-beta (5 ng/ml) stimulation. Eruberin A treatment also led to a notable decrease in the activation of nuclear factor-kappaB (NF-κB) and the phosphorylation of phosphoinositide 3-kinase (PI3K)/serine-threonine kinase (AKT). Conclusion: Our results demonstrated that eruberin A significantly suppressed the expression levels of fibrotic mediators in PSCs, and we suggest that its anti-fibrotic mechanism was associated with an attenuation of the PI3K/AKT/NF-κB signaling pathway.

Keywords