PLoS ONE (Jan 2022)

Optimization and evaluation of a two-stage chromogenic assay procedure for measurement of emicizumab plasma levels.

  • Nasim Shahidi Hamedani,
  • Johannes Oldenburg,
  • Bernd Pötzsch,
  • Jens Müller

DOI
https://doi.org/10.1371/journal.pone.0271330
Journal volume & issue
Vol. 17, no. 7
p. e0271330

Abstract

Read online

Emicizumab mimics the hemostatic activity of activated factor VIII (FVIIIa) within the tenase complex. Despite functional similarities between FVIIIa and emicizumab, conventional laboratory methods designed for monitoring of FVIII activity are inappropriate for the measurement of emicizumab. At present, a modified one stage (FVIII) assay (mOSA) is mainly used for emicizumab monitoring. Two-stage chromogenic FVIII assays based on human factors can be used, although limited performance due to lack of corresponding optimization might be observed. Furthermore, the presence of FVIII or anticoagulants in the patient sample may falsify assay results. To address these issues, we optimized and evaluated a two-stage chromogenic assay (emi-tenase) for measurement of emicizumab in plasma samples. Heat inactivation of samples was established to abolish the influence of endogenous or substituted FVIII. The lower limit of quantification (LLoQ) was found to be 2 μg/ml in a manual assay format and 9.5 μg/ml on an automated coagulation analyzer. Intra- and inter-assay coefficients of variation (CV) did not exceed 20%. Analysis of 17 patient plasma samples with severe haemophilia A under emicizumab treatment showed good correlation of results between the emi-tenase assay and the mOSA (Cohens Kappa coefficient = 0.9). Taken together, the emi-tenase assay allows specific measurement of emicizumab plasma levels over a broad concentration range (10 μg/ml to 100 μg/ml). The assay can be applied on an automated coagulation analyzer, demonstrating its applicability within a routine laboratory setting.