Journal of Systemics, Cybernetics and Informatics (Oct 2008)

Automated Energy Calibration and Fitting of LaCl3(Ce) y-Spectra Using Peak Likelihood and Tabu Search

  • Timothy P. McClanahan,
  • Murray H. Loew,
  • Jacob I. Trombka

Journal volume & issue
Vol. 6, no. 5
pp. 16 – 20

Abstract

Read online

An automated method for ?-emission spectrum calibration and deconvolution is presented for spaceflight applications for a Cerium doped Lanthanum Chloride, (LaCl3(Ce)) ?-ray detector system. This detector will be coupled with a pulsed neutron generator (PNG) to induce and enhance nuclide signal quality and rates, yielding large volumes of spectral information. Automated analytical methods are required to deconvolve and quantify nuclide signals from spectra; this will both reduce human interactions in spectrum analysis and facilitate feedback to automated robotic and operations planning. Initial system tests indicate significant energy calibration drifts (>6%), that which must be mitigated for spectrum analysis. A linear energy calibration model is presently considered, with gain and zero factors. Deconvolution methods incorporate a tabu search heuristic to formulate and optimize searches using memory structures. Iterative use of a peak likelihood methodology identifies global calibration minima and peak areas. The method is compared to manual methods of calibration and indicates superior performance using tabu methods. Performance of the Tabu enhanced calibration method is superior to similar unoptimized local search. The techniques are also applicable to other emission spectroscopy, eg. X-ray and neutron.