Environmental Data Science (Jan 2023)

Rapid assessment of vessel noise events and quiet periods in Glacier Bay National Park and Preserve using a convolutional neural net

  • Samara M. Haver,
  • Kyle B. Gustafson,
  • Christine M. Gabriele

DOI
https://doi.org/10.1017/eds.2022.36
Journal volume & issue
Vol. 2

Abstract

Read online

Patterns of underwater human-generated noise events and durations of noise-free intervals (NFIs) are soundscape metrics that can potentially affect animal communication and behavior. Due to the arduous task of manual analysis, these metrics have not been described in Glacier Bay National Park and Preserve (GBNP). To surmount this challenge, we created a machine-learning (ML) model trained on 18 hr of labeled audio samples from a hydrophone operating in GBNP since 2000. The validated convolutional neural net transfer-learning model (GBNP-CNN) was used to classify several categories of sound sources in nearly 9,000 hours of data from the same hydrophone, enabling our study of vessel noise between 2017 and 2020. We focused on the occurrence and duration of NFI and the hourly proportion (HP) of vessel noise. As expected, shorter NFI and higher HP were found during daytime hours. The GBNP-CNN F1 score was 75%, largely due to the model’s confusion of vessel noise with harbor seal roars. Therefore, NFI lengths should be considered minimum estimates, but the errors do not qualitatively affect diurnal or seasonal patterns. In 2018, mean daytime NFI during peak tourism months (June–August) was less than half the duration compared to May and September (1.3 min vs. 2.9 min). In 2020, when large-vessel tourism was substantially reduced but small-craft activity continued, we found that HP decreased in June–August. In conjunction with other soundscape metrics, monitoring NFI trends using ML models such as GBNP-CNN will provide crucial information for management and conservation of acoustic habitats and sensitive species in GBNP.

Keywords