Journal of Thermal Science and Technology (Jul 2013)
Thermal Convection in an Oscillating Cube at Various Frequencies and Amplitudes
Abstract
In this study, the authors numerically investigate the frequency response on the three-dimensional thermal convection in a cubic cavity heated below in the gravitational field, concerning flow characteristics such as flow structure and a global quantity the spatially-averaged kinetic energy K. The authors assume incompressible fluid with a Prandtl number Pr = 7.1 (water) and with a Rayleigh number Ra = 1.0×104 or 4.0×104. The direction of a forced sinusoidal oscillation is parallel to the terrestrial gravity. The authors especially focus upon the influences of both the forced-oscillation amplitude η and frequency ω in non-dimensional forms, whose test ranges are 1.5 ≤ η ≤ 15 and 10 ≤ ω ≤ 103. The obtained results are as follows. For Ra = 4.0×104, as well as Ra = 1.0×104 (Tanigawa et al., 2009), we can observe the optimum frequency ωKmax where the amplitude of K attains the maximum, each η. And, for both Ra's, ωKmax becomes the minimum at η = 1.5 - 2.0. Especially for Ra = 4.0×104, ωKmax is affected by the initial conditions. For both Ra's, the maximum of the K amplitude uniquely exists at ω= ωKmax each η, when η < 1.5. On the other hand, we can observe not single but plural peak frequencies with locally-maximum K's each η, when η ≥ 1.5. It is confirmed that such plural frequencies are related with the appearances of various flow structures such as S1, S2, S4, S5, S6 and S8. Especially for Ra = 4.0×104, this relation is also affected by the initial conditions. In addition, the details of a new flow structure S8 is reported.
Keywords