Animals (Oct 2024)
Prevalence, Virulence Genes, Drug Resistance and Genetic Evolution of <i>Trueperella pyogenes</i> in Small Ruminants in Western China
Abstract
Trueperella pyogenes is a significant opportunistic pathogen that causes substantial economic losses in animal agriculture due to its ability to infect various animal tissues and organs. Limited research has been conducted on the prevalence and biological characteristics of T. pyogenes isolated from sheep and goats. This study aimed to isolate T. pyogenes from clinical samples of sheep and goats in western China, examining genetic evolutionary relationships, antibiotic resistance, and virulence genes. Between 2021 and 2023, standard bacteriological methods were used to isolate and identify T. pyogenes from 316 samples (209 from goats and 107 from sheep) collected from 39 farms. Susceptibility to 14 antibiotics was tested using broth microdilution per CLSI guidelines, and PCR detected eight virulence genes. Whole-genome sequencing analyzed genetic relationships and gene carriage status in 39 isolates. The results indicated that 86 strains of T. pyogenes were isolated from 316 samples, yielding an isolation rate of 27.2% (goats n = 47, 22.5%; sheep n = 39, 36.4%). The virulence genes plo, cbpA, nanH, nanP, fimA, fimC, and fimE were present in 100%, 66.7%, 64.1%, 71.8%, 69.2%, 59.0%, and 82.1% of isolates, respectively, with none carrying the fimG gene. The dominant virulence genotype was plo/nanH/nanP/fimA/fimC/fimE. The isolates exhibited resistance to erythromycin (44.2%, 38/86), gentamicin (38.4%, 33/86), sulfamethoxazole/trimethoprim (37.2%, 32/86), tetracycline (32.6%, 28/86), and streptomycin (32.6%, 28/86), and low resistance to chloramphenicol (14.0%, 12/86), ciprofloxacin (7.0%, 6/86), penicillin (5.8%, 5/86), and clindamycin (4.7%, 4/86). All isolates were susceptible to cefotaxime, vancomycin, and linezolid. Among the 86 isolates, 37 (43.0%) displayed multidrug resistance (MDR) characteristics. The whole genome sequencing of 39 isolates identified eight types of resistance genes, including ant(2″)-Ia, ant(3″)-Ia, cmlA1, cmx, erm(X), lnu(A), sul1, and tet(W). Except for tet(W), erm(X), and sul1, the other resistance genes were reported for the first time in T. pyogenes isolated in China. The drug susceptibility test results and resistance gene detection for the isolated strains were consistent for tetracycline, erythromycin, gentamicin, and sulfisoxazole. Similar allelic profiles and genetic evolutionary relationships were found among isolates from different farms. This study highlights the antibiotic resistance status and virulence gene-carrying rate of Trueperella pyogenes, providing a basis for clinical medication.
Keywords