Journal of Lipid Research (Oct 1988)

Lipid transfers between reconstituted high density lipoprotein complexes and low density lipoproteins: effects of plasma protein factors

  • A Jonas,
  • K E Kézdy,
  • M I Williams,
  • K A Rye

Journal volume & issue
Vol. 29, no. 10
pp. 1349 – 1357

Abstract

Read online

In this study we examined the transfer of lipids between reconstituted high density lipoprotein discs (r-HDL) and human low density lipoproteins (LDL) in the presence and absence of lecithin:cholesterol acyltransferase (LCAT) or of plasma phospholipid transfer protein (PLTP). We found that spontaneous transfer of phospholipids from r-HDL to LDL occurred by an apparent first order reaction with a half-time of 5.8 to 6.9 hr depending on the phospholipid. During the time of incubation of r-HDL with LDL (from 0 to 25 hr), the phospholipid content of r-HDL decreased more than 30%, the free cholesterol content increased 2.5-fold, and low levels of cholesteryl esters appeared in r-HDL. These compositional changes gave rise to small discoidal particles with a limiting diameter of 77 A and two molecules of apoA-I per particle. When LCAT was included in the reaction mixture, the r-HDL lost even more phospholipid, lost some free cholesterol, and gained cholesteryl esters relative to the apolipoprotein content, due to the enzymatic reaction. The products of the LCAT reaction had a diameter of 93 A and three, rather than two, apoA-I molecules per particle. Inclusion of PLTP into the reaction mixture accelerated the transfer of phospholipids (half-time of 1.7 hr) and the formation of the 77 A product. In addition to these compositional and morphological changes, which may be important in the interconversions of native HDL subspecies, the prolonged incubations revealed some slow reactions, such as the esterification of LDL cholesterol by LCAT, a background formation of cholesteryl esters in r-HDL, and an apparent hydrolysis of cholesteryl esters in LDL in the presence of r-HDL.