Scientific Reports (Feb 2024)

Orthogonal mode couplers for plasmonic chip based on metal–insulator–metal waveguide for temperature sensing application

  • Muhammad Ali Butt,
  • Ryszard Piramidowicz

DOI
https://doi.org/10.1038/s41598-024-54244-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract In this work, a plasmonic sensor based on metal–insulator–metal (MIM) waveguide for temperature sensing application is numerically investigated via finite element method (FEM). The resonant cavity filled with PDMS polymer is side-coupled to the MIM bus waveguide. The sensitivity of the proposed device is ~ − 0.44 nm/°C which can be further enhanced to − 0.63 nm/°C by embedding a period array of metallic nanoblocks in the center of the cavity. We comprehend the existence of numerous highly attractive and sensitive plasmonic sensor designs, yet a notable gap exists in the exploration of light coupling mechanisms to these nanoscale waveguides. Consequently, we introduced an attractive approach: orthogonal mode couplers designed for plasmonic chips, which leverage MIM waveguide-based sensors. The optimized transmission of the hybrid system including silicon couplers and MIM waveguide is in the range of − 1.73 dB to − 2.93 dB for a broad wavelength range of 1450–1650 nm. The skillful integration of these couplers not only distinguishes our plasmonic sensor but also positions it as a highly promising solution for an extensive array of sensing applications.

Keywords