Engineering Proceedings (Oct 2023)
Achieving Sub-Decimeter Accuracy with the Galileo High Accuracy Service: Results from GMV’s HAS Positioning Engine
Abstract
High-accuracy (HA) positioning services allow users to achieve sub-decimeter-level positioning accuracy. Although these kinds of services are not new, the market is showing great interest in exploiting them for new applications within the mass-market domain. This growing interest is causing a change in the paradigm of HA services, moving from niche sectors to applications targeting billions of users. Considering this framework, the Galileo High Accuracy Service (HAS) provides an open-access service based on the provision of high-accuracy corrections transmitted through the Galileo E6-B signal (E6, data component). The data retrieved by the end-user, which includes orbit, clock, and bias corrections, is reconstructed to allow the computation of Precise Point Positioning (PPP) solutions. This paper is focused on the description and results of GMV’s HAS Positioning Engine (HAS-PE) software library which, implements a PPP solution using the HAS corrections transmitted through Galileo Signal-in-Space. A high-level overview of the integration of the HAS in the Positioning Engine software is presented together with user performance assessments based on static and kinematic tests executed to process real data from GNSS receivers in real time. The static tests are performed using the GMV Global station network, which consists of geodetic grade receivers tracking the signal in open-sky locations around the globe. The kinematic tests are performed with a setup consisting of a mass-market receiver and a high-end receiver for obtaining the E6 pages. The PPP solutions are configured to process both Galileo and GPS corrections transmitted through the Galileo satellites. The assessment performed includes the computation of a set of performance indicators aimed at the analysis of high-accuracy positioning performances. The results of this assessment show that a PPP user taking advantage of this Galileo HAS initial service may easily achieve decimeter-level accuracy on the horizontal and vertical components.
Keywords